
DICETHER: A SECURE DICE GAME 5F62607 - 2018-08-12

DICETHER

Abstract. This paper proposes a protocol for building a fair, secure and fast dice game. To achieve this
the implementation is based on state channels. State channels allows to move state-altering operation normally
performed on a blockchain off the blockchain. For conflict management and settlement Ethereum smart contracts
are used but it should work on other blockchains providing smart contracts as well. The implementation can
be tested at dicether.com

1. Introduction

Currently there are mainly two types of dice games
implementations available. At the first one the player
deposits his funds for playing at the casino. To verify
the results of the bets a provably fair algorithm [2] is
used. So, a user can verify the result of his bets, but
the payout of the winnings is not guaranteed. The
user needs to trust the operator to let him withdraw
his funds and winnings.

The other one is using smart contracts [12] to im-
plement the game logic. The main downside of imple-
menting the whole game logic inside a smart contract
is the slow gambling experience for the player. He has
to wait a few minutes or even longer for every single
dice roll. Furthermore, currently there is no reliable
smart contract random number generating possible.
So, third party services like e.g. RANDOM.ORG [10]
and ORACLIZE [8] need to be used.

1.1. Driving Factors. Dicether combines the ad-
vantages of both approaches without their disadvan-
tages, to create a better and securer overall gambling
experience. The key factors are fast gameplay and
provable secure winnings payout and no third-party
dependency for random number generation.

In this context fast means a bet should be resolved
in under one second. Secure winnings payout implies
it should always possible for Player (P) to get his win-
nings. In no circumstances it should be possible for
the operator to withhold the winnings of P. The ran-
dom number generation should only depend on Server
(S) and P. Both should not know the result before the
bet is finished.

1.2. Related Work. Etheroll [5] is a full on chain
dice implementation. For random number generation
is uses RANDOM.ORG and ORACLIZE . To provide
secure random numbers both need to be trusted. Un-
der this assumption Etheroll is secure and provable
fair. But RANDOM.ORG could change the random
number generated to their advantage. Furthermore,
they does not even need to change the random num-
bers, they could just buffer the random numbers and
place bets according to the previous known results.

The same applies to ORACLIZE. Additional, as they
are implemented on the Ethereum platform, process-
ing a bet can take up to multiple minutes.

Edgeless [4] provides a fast dice game. They do not
provide any detailed documentation of the underling
implementation in their whitepaper. The following
details are extracted from reviewing their smart con-
tract and their user interface. To start playing the
player deposits his funds to their smart contract. For
random number generation a server and player gener-
ated a random number (seed) is combined. The hash
of the server seed is shown to the player before ev-
ery bet. To check the fairness the player would have
to check the server seed hash and combine his seed
and the server seed for every single bet. So, checking
fairness is more complicated as in traditional provable
fair dice games like e.g. Primedice [9].

Funfair [7] is a company providing blockchain so-
lutions for online casinos. They do not have a dice
game, but they are working on a state channel imple-
mentation. As they are currently closed source and do
not provide any detailed documentation, no detailed
comparison can be provided.

2. Overview

The three main problems to solve are
• Provable payout of the player funds and win-

nings. It should not be possible for the casino
to withhold the player funds or player win-
nings.

• The bet result generation should be fast. It
should not take more than one second until
the result is available to the player.

• The random number generation should not be
dependent on third party services. The result-
ing random number for every bet should only
be dependent on both S and P. Both should
not know the result beforehand.

Providing fast bet resolution, which implies the re-
sult should be available to the player under one sec-
ond, the implementation can currently not be com-
pletely smart contract based. Additionally, secure and

1

dicether.com
https://random.org
https://oraclize.it
https://random.org
https://oraclize.it


DICETHER: A SECURE DICE GAME 5F62607 - 2018-08-12 2

fast on chain random number generation is currently
not possible on the ethereum platform [6].

In order to solve these problems, we use a state
channel [3] approach. Only for creating a game ses-
sion, which can comprise many bet, ending the game
session and management and settlement of conflicts,
smart contract interaction in necessary. For every bet
the current game state is countersigned by both S and
P. If a conflict arise the current state can be pushed to
the smart contract, which handles processing the bet
and ends the game session. The details are described
in section 3

Creating a game session, the player funds used for
placing bet are deposited in the smart contract. S
does not have access to them so it can not withdraw
or otherwise remove the player funds. The house stake
used to pay out the winnings is also managed by the
smart contract. So, the players can check if the house
funds are sufficient.

For random number generation both P and S gen-
erate random seeds and generate, a chain of pseudo-
random numbers by using Keccak hash function [1] for
successive hashing the previous results. For detailed
description see subsection 3.1. It is easy to recalculate
the chain entries in one direction but as hash function
are non-invertible it is impossible calculate entries in
the other direction.

For every bet for random number generation the
respectively previous entries of the hash chains are
used as seeds for random number generation. The
seed of S a P are combined and hence the random
number generated. During a game session the ran-
dom numbers for every bet can be easily verified by
just rebuilding both hash chains starting with the last
placed bet seeds.

3. Protocol Description

After giving a brief overview we will know describe
the implementation in detail. Before placing bets, the
player needs to initiate a game session. The number
of bets possible for a game session is dependent on
the hashchain size. For a hashchain with size n, n−2
bets can be placed. During one game session only
three blockchain interactions are necessary. Two1 for
creating the session and one for ending the session.

All interactions with the smart contract or exter-
nally defined functions are formatted as typewriter
text. E.g. the function called by the player to create
a games session is written as createGame.

3.1. Creating a game session. For starting the
game session P generates a random value rp and uses
it as a seed for generating a hash chain by hashing
iteratively the previous result with the Keccak hash
function. Formally the generation of the hash chain

is defined as:

(1) hc(r, i) =

{
KEC(r), i = 0

KEC(hc(r, i− 1)), i > 0

The number of entries n of the hash chain dictates
maximum number of games playable. As described,
currently we use n = 1000 iterations so at most
1000−2 games can be played during one game session.

To start a new game session P sends a request to
S. S generates a random number rs and using this
number a hash chain of size n.

Then S signs the dataD. The resulting signature is
denoted by sigstart. D comprises the following fields:

contractAddress: Address of the contract;
formally Da

playerAddress: Address of the player; for-
mally Dpa

previousGameId: Id of the previous game ses-
sion of Dpa. Initial 0; formally Dg

createBefore: Unix timestamp. Only before
that timestamp the player is allowed to create
a new game session; formally Dt

serverEndHash: Last hash chain entry of S;
hc(rs, n− 1)

To finally start a new game session P deposits his
funds for the game session and publish his hc(rp, n−1)
and the last hash chain entry of S hc(rs, n− 1) to the
smart contract:

createGame(Da, Dpa, Dg, Dt, hc(rp, n− 1), sigstart, {value : fp})
(2)

The funds are securely stored in the contract and
hc(rp, n− 1), hc(rs, n− 1) is published.

Placing bets happen by counter signing of current
bet and previous results and revealing previous entry
of hash chain for random number generation. The
Game state G = (B,S) consists of the bet B and the
signature S. The bet B comprises the following fields:

roundId: A scalar value equal to the number
of placed bets for the game session; formally:
Br

gameType: Game type of placed bet; formally:
Bt

number: Number chosen by player. E.g. be-
tween 1 and 98 for dice; formally: Bn

value: Amount player wants to bet; formally:
Bv

currentBalance: Profit or Loss of previous
bets. Initial 0; formally: Bb

serverHash: Current server hash; formally:
Bsh = hc(ps, n−Br).

playerHash: Current player hash; formally:
Bph = hc(ss, n−Br).

gameId: Game session identifier. Simple
counter incremented for every game session
created; formally: Bg

1Creating a game session can be done in one transaction (Will be implemented in a future version).



DICETHER: A SECURE DICE GAME 5F62607 - 2018-08-12 3

contractAddress: Address of contract this bet
is valid; formally: Bc

The signature comprises the fields:

playerSignature: Player’ s signature over bet
data B; formally: Sp

serverSignature: Server’ s signature over bet
data B; formally: Ss

3.1.1. Initiating a bet. To place a bet the player in-
crements the current round id, sets the game type g,
chooses a number n, a value v, sets the hashes of S
and P and the balance b. b is the balance of the pre-
vious bet state added to the player profit of the last
bet. Formally with B∗ being the new bet state and
B being the old state:

B∗
r = Br + 1(3)

B∗
t = g(4)

B∗
n = n(5)

B∗
v = v(6)

B∗
b = b(7)

B∗
ph = hc(ps, n−B∗

r )(8)
B∗

sh = hc(ss, n−B∗
r )(9)

The new bet state B∗ is signed by P. The signature
and B∗ is send to S. S verifies the signature the bet
state B∗. If verification passes S signs the bet B∗ and
returns the signature to P Subsequent P verifies the
signature of S.

3.1.2. Revealing the seed. If the signature S is valid P
sends his seed ps = hc(rs, n−B∗

r − 1), which is noth-
ing more than the previous entry in the hash chain,
to S. S verifies the seed. Formally:

(10) ` KEC(ps) = B∗
ph

If verification succeeds S returns its seed ss =
hc(rp, n−B∗

r − 1) to P. P verifies the seed:

(11) ` KEC(ss) = B∗
sh

3.1.3. Result calculation. To finally generate the ran-
dom number r both seeds are concatenated, and the
Keccak hash is calculated:

(12) r = KEC(ss ‖ ps)

The bet result calculation is dependent of the game
type, e.g. for dice, the result number is calculated by r
mod 100. Modulo bias [11] is negligible as r ≫ 100.
With the result number the new balance can be cal-
culated (game type dependent) and the next round
can be started.

3.2. Ending the game session. To end the current
game session P signs a special bet state with game

type Bt = 0. As above B describes previous bet state
B∗ is the new one:

B∗
r = Br + 1(13)

B∗
t = 0(14)

B∗
n = 0(15)

B∗
v = 0(16)

B∗
b = Bb(17)

B∗
ph = hc(ps, n−B∗

r )(18)
B∗

sh = hc(ss, n−B∗
r )(19)

As when placing bets B∗ and the signature is send
to S where the signature and the state is verified. If
both are valid S signs B∗ and sends the the current
bet state B∗ and the signature of P to the smart con-
tract:

(20) serverEndGame(B∗, S∗
p)

The smart contract validates the signature and sends
the balance added to funds initial deposited by the
player back to him.

3.3. Conflict Resolution. In the above chapter we
have described how a regular game session, when
player and server comply with the rules, is handled.
Know will examine which conflicts between player and
server can arise and describe how they can be resolved
using the conflict resolution logic implemented in the
smart contract.

If the opponent does not respond the conflict ini-
tiator can force the termination of the game session.
To give the opponent enough time to respond to a
conflict all functions forcing game session termination
are time locked! Additionally, to offer an incentive to
regular end game session a fee needs to paid the oppo-
nent when he does not respond in time and the game
session termination is forced.

3.3.1. S does not respond after game session creation.
P starts game session g and the server stops respond-
ing. With playerCancelActiveGame(g) the player
can initiated the termination of the game session. Af-
ter specific time ts has passed to give the server time
to respond the player can force the termination of the
game session and gets his deposited funds send back.

3.3.2. S does not allow to place new bets or to end
the game session. With the current game state G =
(B,S) P can push the current bet state B, his seed
ps = hc(ps, n−Br − 1) and the signature of S to the
smart contract:

(21) playerEndGameConflict(B, ps, Ss)

S has time ts to push a newer bet state B∗ or confirm
state of P. If the server does not respond in time ts P
can force the game session termination. The bet state
B is used by the smart contract to calculate players
earnings. The player earnings added to the initial de-
posited funds are send back to P.



REFERENCES 4

3.3.3. S does not respond to the reveal seed request. P
placed a bet B∗, S signed the bet and returned its sig-
nature to P. In the next step P sends his seed to S but
it does not return its seed. P can now publish the cur-
rent bet state B∗ and his seed ps = hc(rs, n−Br− 1)
to the smart contract:

(22) playerEndGameConflict(B, ps, Ss)

If S does not reveal its seed int time ts to the smart
contract, the player can force the termination of the
game session and the bet is processed as the player
has won.

3.3.4. P creates a game session but does not play. S
can initiate the termination of the game session:

(23) serverCancelActiveGame()

P has time tp to push newer bet state. If he does not,
S can force the termination of the game session. The
funds deposited by P are send to back to him.

3.3.5. P stops playing without ending the game ses-
sion. With the game state G = (B,S) S can publish
last bet state B, his seed ss = hc(rs, n−Br − 1) and
the player seed ps = hc(rs, n−Br−1) to the contract:

(24) serverEndGameConflict(B, ss, ps, Sp)

If P does not publish a newer one or confirms the cur-
rent state in time tp, S can force the termination of
the game session. The current balance added to the
initial deposited funds are send back to P.

3.3.6. The player does not reveal his seed. The bet
B∗ is signed by P and S and in the next step P would
need to reveal his seed. Without P revealing his seed
both P and S can not calculate the random number
needed to get the bet result. So, this case can be han-
dled as the bet B∗ was never placed and the player
stopped playing, see subsubsection 3.3.4.

This is the only real difference in player and server
side conflict handling. If S does not reveal his seed
the bet can bet ignored as both S and P do not know
the bet outcome. But the case the server does not
reveal its seed special logic is needed. As in the pre-
vious step P send his seed to S, so S can calculate the
result. If it does not like it, it could just not return
its seed. So in this case the bet can not be ignored
and this conflict needs special handling as described
in subsubsection 3.3.3.

4. Conclusions

We have introduced and formally defined the pro-
tocol of a state channel based dice game. It pro-
vides fast game play and yet it is provable fair and
secure. The complete game session can be verified
by the player. The payout of the winnings and
funds of the player cannot be withhold by the op-
erator. The implementation can be tested under
https://dicether.com. The source code can be
found at https://github.com/dicether.

References

[1] Guido Bertoni et al. KECCAK. 2017. url:
https://keccak.team/keccak.html.

[2] BitZino And The Dawn Of ’Provably Fair’
Casino Gaming. Aug. 2012. url: https:
//web.archive.org/web/20121005100002/
http://www.forbes.com/sites/jonmatonis/
2012/08/31/bitzino-and-the-dawn-of-
provably-fair-casino-gaming.

[3] Jeff Coleman, Denton Liu, and Anna Wang.
Fully Abstracted State Channels. 2017. url:
https://github.com/ledgerlabs/state-
channels/wiki/Fully-Abstracted-State-
Channels.

[4] Edgeless. “EDGELESS CASINO CROWD-
SALE WHITEPAPER”. In: (Dec. 2016).

[5] Etheroll. “ETHEROLL DICE GAME
WHITEPAPER”. In: (2016).

[6] HPOC_2015. 2015. url: https://github.
com/ethereum/wiki/wiki/HPOC%5C_2015.

[7] Longley and Oliver HoptonWOOD. “FunFair
Technology Roadmap and Discussion”. In:
(June 2017).

[8] ORACLIZE LIMITED. url: https://
oraclize.it.

[9] Primedice. url: https://primdice.com.
[10] RANDOM.ORG. url: https://random.org.
[11] Wikipedia contributors. Fisher–Yates_shuffle

— Wikipedia, The Free Encyclopedia. [On-
line; accessed 10-Apr-2018]. 2018. url: https:
//en.wikipedia.org/wiki/Fisher%E2%80%
93Yates%5C_shuffle%5Cbibtex%20escape%
20#Modulo_bias.

[12] DR. GAVIN WOOD. “ETHEREUM: A SE-
CURE DECENTRALISED GENERALISED
TRANSACTION LEDGER BYZANTIUM
VERSION c0c3b5d - 2018-04-19”. In: (Apr.
2018).

https://dicether.com
https://github.com/dicether
https://keccak.team/keccak.html
https://web.archive.org/web/20121005100002/http://www.forbes.com/sites/jonmatonis/2012/08/31/bitzino-and-the-dawn-of-provably-fair-casino-gaming
https://web.archive.org/web/20121005100002/http://www.forbes.com/sites/jonmatonis/2012/08/31/bitzino-and-the-dawn-of-provably-fair-casino-gaming
https://web.archive.org/web/20121005100002/http://www.forbes.com/sites/jonmatonis/2012/08/31/bitzino-and-the-dawn-of-provably-fair-casino-gaming
https://web.archive.org/web/20121005100002/http://www.forbes.com/sites/jonmatonis/2012/08/31/bitzino-and-the-dawn-of-provably-fair-casino-gaming
https://web.archive.org/web/20121005100002/http://www.forbes.com/sites/jonmatonis/2012/08/31/bitzino-and-the-dawn-of-provably-fair-casino-gaming
https://github.com/ledgerlabs/state-channels/wiki/Fully-Abstracted-State-Channels
https://github.com/ledgerlabs/state-channels/wiki/Fully-Abstracted-State-Channels
https://github.com/ledgerlabs/state-channels/wiki/Fully-Abstracted-State-Channels
https://github.com/ethereum/wiki/wiki/HPOC%5C_2015
https://github.com/ethereum/wiki/wiki/HPOC%5C_2015
https://oraclize.it
https://oraclize.it
https://primdice.com
https://random.org
https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates%5C_shuffle%5Cbibtex%20escape%20#Modulo_bias
https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates%5C_shuffle%5Cbibtex%20escape%20#Modulo_bias
https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates%5C_shuffle%5Cbibtex%20escape%20#Modulo_bias
https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates%5C_shuffle%5Cbibtex%20escape%20#Modulo_bias

	1. Introduction
	1.1. Driving Factors
	1.2. Related Work

	2. Overview
	3. Protocol Description
	3.1. Creating a game session
	3.2. Ending the game session
	3.3. Conflict Resolution

	4. Conclusions
	References

